"

8 Chapter 8 – The Future of Information Systems

Learning Objectives

8.1 Understand the role information systems will play in the future.

8.2 Identify new information technology that will likely shape the future.

Information systems have evolved at a rapid pace ever since their introduction in the 1950s. Today, devices that we can hold in one hand are more powerful than the computers used to land a man on the moon. The Internet has made the entire world accessible to us, allowing us to communicate and collaborate with each other like never before.

Evolving Future Trends

The first trend to note is the continuing expansion of globalization. The use of the Internet is growing all over the world, and with it the use of digital devices. The growth is coming from some unexpected places; countries such as Indonesia and Iran are leading the way in Internet growth. Social media growth is another trend that continues. Ever since the advent of Web 2.0 and e-commerce, users of information systems have expected to be able to modify their experiences to meet their personal tastes. From custom backgrounds on computer desktops to unique ringtones on mobile phones, makers of digital devices provide the ability to personalize how we use them. More recently, companies such as Netflix have begun assisting their users with personalizations by making suggestions. In the future, we will begin seeing devices perfectly matched to our personal preferences, based upon information collected about us in the past.

Perhaps the most impactful trend in digital technologies in the last decade has been the advent of mobile technologies. Beginning with the simple cellphone in the 1990s and evolving into the smartphones and tablets of today, the growth of mobile has been overwhelming.

Collaborative

As more of us use smartphones and wearables, it will be simpler than ever to share data with each other for mutual benefit. Some of this sharing can be done passively, such as reporting our location in order to update traffic statistics. Other data can be reported actively, such as adding our rating of a restaurant to a review site.

The smartphone app Waze is a community-based tool that keeps track of the route you are traveling and how fast you are making your way to your destination. In return for providing your data, you can benefit from the data being sent from all of the other users of the app. Waze will route you around traffic and accidents based upon real-time reports from other users.

Yelp! allows consumers to post ratings and reviews of local businesses into a database, and then it provides that data back to consumers via its website or mobile phone app. By compiling ratings of restaurants, shopping centers, and services, and then allowing consumers to search through its directory, Yelp! has become a huge source of business for many companies. Unlike data collected passively however, Yelp! relies on its users to take the time to provide honest ratings and reviews.

Printable

One of the most amazing innovations to be developed recently is the 3-D printer. A 3-D printer allows you to print virtually any 3-D object based on a model of that object designed on a computer. 3-D printers work by creating layer upon layer of the model using malleable materials, such as different types of glass, metals, or even wax.

3-D printing is quite useful for prototyping the designs of products to determine their feasibility and marketability. 3-D printing has also been used to create working prosthetic legs, handguns, and even an ear that can hear beyond the range of normal hearing

3-D printing is one of many technologies embraced by the “maker” movement. Chris Anderson, editor of Wired magazine, puts it this way.

In a nutshell, the term “Maker” refers to a new category of builders who are using open-source methods and the latest technology to bring manufacturing out of its traditional factory context, and into the realm of the personal desktop computer. Until recently, the ability to manufacture was reserved for those who owned factories. What’s happened over the last five years is that we’ve brought the Web’s democratizing power to manufacturing. Today, you can manufacture with the push of a button.

Findable

The “Internet of Things” refers to the idea of physical objects being connected to the Internet. Advances in wireless technologies and sensors will allow physical objects to send and receive data about themselves. Many of the technologies to enable this are already available – it is just a matter of integrating them together.

In a 2010 report by McKinsey & Company on the Internet of Things, six broad applications are identified:

•  Tracking behavior. When products are embedded with sensors, companies can track the movements of these products and even monitor interactions with them. Business models can be fine-tuned to take advantage of this behavioral data. Some insurance companies, for example, are offering to install location sensors in customers’ cars. That allows these companies to base the price of policies on how a car is driven as well as where it travels.

•  Enhanced situational awareness. Data from large numbers of sensors deployed, for example, in infrastructure (such as roads and buildings), or to report on environmental conditions (including soil moisture, ocean currents, or weather), can give decision makers a heightened awareness of real-time events, particularly when the sensors are used with advanced display or visualization

technologies. Security personnel, for instance, can use sensor networks that combine video, audio, and vibration detectors to spot unauthorized individuals who enter restricted areas.

  • Sensor-driven decision analysis. The Internet of Things also can support longer-range, more complex human planning and decision making. The technology requirements – tremendous storage and computing resources linked with advanced software systems that generate a variety of graphical displays for analyzing data – rise accordingly.
  • Process optimization. Some industries, such as chemical production, are installing legions of sensors to bring much greater granularity to monitoring. These sensors feed data to computers, which in turn analyze the data and then send signals to actuators that adjust processes – for example, by modifying ingredient mixtures, temperatures, or pressures.
  • Optimized resource consumption. Networked sensors and automated feedback mechanisms can change usage patterns for scarce resources, such as energy and water. This can be accomplished by dynamically changing the price of these goods to increase or reduce demand.
  • Complex autonomous systems. The most demanding use of the Internet of Things involves the rapid, real-time sensing of unpredictable conditions and instantaneous responses guided by automated systems. This kind of machine decision-making mimics human reactions, though at vastly enhanced performance levels. The automobile industry, for instance, is stepping up the development of systems that can detect imminent collisions and take evasive action.

Autonomous

A final trend that is emerging is an extension of the Internet of Things: autonomous robots and vehicles. By combining software, sensors, and location technologies, devices that can operate themselves to perform specific functions are being developed. These take the form of creations such as medical nanotechnology robots (nanobots), self-driving cars, or unmanned aerial vehicles (UAVs).  A nanobot is a robot whose components are on the scale of about a nanometer, which is one-billionth of a meter. While still an emerging field, it is showing promise for applications in the medical field. For example, a set of nanobots could be introduced into the human body to combat cancer or a specific disease. A UAV, often referred to as a “drone,” is a small airplane or helicopter that can fly without a pilot. Instead of a pilot, they are either run autonomously by computers in the vehicle or operated by a person using a remote control.

Chapter 8 Assignment

OVERVIEW

This assignment has you discuss the future of the components of information systems.

ASSIGNMENT

Create a presentation comparing the five components of information systems (hardware, software, data, procedures, people) as they currently operate to future projections of them in the year 2050.

STEPS/QUESTIONS
  • Create a presentation (recommend PowerPoint) that lists each component: Hardware, Software, Data, Procedures, People.
  • For each component, use bullet points to describe the current state of that component.
  • For each component, use bullet points to describe the ‘state’ of that component in 2050.
  • Finally, formulate a conclusion on the state of information systems in 2050.
GRADING

A satisfactory submission will provide basic bullet points on the five components of an information system.

A beyond satisfactory submission will likely provide an in-depth analysis of the components and the future of information systems.

 

License

Icon for the Creative Commons Attribution-NonCommercial 4.0 International License

Information Systems: No Boundaries! Copyright © 2021 by Shane M Schartz is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License, except where otherwise noted.